- Upgrading a softswitrch solutions to IMS
- Intelligent Networks( IN)
- Fixed/mobile convergence(FMC) with IMS
- Legacy to IP transformation
- WebRTC based Unified Communication platform
- Challenges in Migration to IMS (Total IP )
The telecommunications industry has been going through a significant transformation over the past few years. At the outset incumbent operators used to focus on mainly basic voice services and still remained profitable due to the limited number of players in the space and requirement of huge amounts as initial investment.
However, with the advent of competitive vendors, rise in consumer base, and introduction of cost effective IP based technologies a major revolution has come about. This has enabled operators to come out of their traditional business models to maintain and enhance subscriber base by providing better and cheaper voice, multimedia and data services in order to grab the biggest possible share in this multi- billion dollar industry.
The evolution in Telecom industry has been accelerating all the time. The Next-Generation Operators wants to keep pace with the rapidly changing technology by, adapting to market needs and looking at the system and business process from multiple perspectives concurrently. Communication Service Providers (CSPs) need to consider several factors in mind before proposing any solution. They need to deploy solutions which are highly automated, highly flexible, caters to customer needs coupled with ultra low operating costs.
Upgrading a softswitrch solutions to IMS
The Softswitch is decomposed into two logical components of a subscriber-facing unit and a PSTN-facing unit.
- Subscriber facing unit in Softswitch is upgraded to AGCF (Access Gateway Control Function)
- PSTN facing unit is upgraded to MGCF (Media Gateway Controller Function) to interwork with IMS as shown.
By separating the Softswitch into these components, the network can be more easily scaled for better overall network efficiencies. More AGCFs can be added as required, allowing the network to scale with an increase in subscribers. Similarly, More PSTN trunks can be added as traffic increases. Once PSTN and subscriber control functions are separated, the IMS elements, CSCF and BGCF functions can be introduced. BGCF is the interface for interconnecting IMS with legacy PSTN networks.

New SIP-based services can now be rapidly rolled out by deploying new Application Servers (AS) and its integrations to other SBC for UCC( unified communication and colloboartion ) systems. IMS has 3GPP specified ISC interface, which is a SIP-based interface for interfacing-to-application servers. Using these constructs, multiple application servers from multiple vendors can be interconnected over the IMS ISC interface.

Intelligent Networks( IN)
Telecom networks (2014) are made up of integrated service digital network (ISDN), the public switched telephone network (PSTN) ,the Public Land Mobility Network (PLMN) and many others. Intelligent networks (IN) ensures that call control is handed over to a control platform. The control platform determines how the establishment of this call shall continue. Applying IN to any of these networks has in common that call establishment is intercepted at a designated node in the network
By hosting new services on the new platform and combining new and old services CSP‟s aim to provide service bundles that would generate new revenue streams. This process is largely dependant on IMS ( IP Multimedia Subsystem ) architecture .

Optimization in operator landscape evolve as result of synergistic technologies that come together to address the innovation and cost optimization needs of operator for better user experience. In following sections different technological evolutions that are affecting overall operator ecosystems have been discussed with focus towards Service Layer.
Fixed/mobile convergence(FMC) with IMS
“Fixed Mobile Convergence is a transition point in the telecommunications industry that will finally remove the distinctions between fixed and mobile networks, providing a superior experience to customers by creating seamless services using a combination of fixed broadband and local access wireless technologies to meet their needs in homes, offices, other buildings and on the go.”
Fixed-Mobile Convergence Alliance (FMCA) 2004
System can communicate over the cellular network, or act as a new endpoint on the IP network. Home Subscriber Server (HSS) manages subscriber data uniformly between the cellular and IP worlds. The Handoff Server runs on top of the ISC interface, and provides a seamless experience when subscribers move from the cellular network to a Wi-Fi network. The AGCF remains the functional centre of the network, but with the introduction of the HSS, has added the Cx and Sh interfaces defined by the IMS.

Legacy to IP transformation
This section broadly covered the aspects of migration from legacy IN solution to new age JAINSLEE framework based one. Applies to Legacy IN hosting voice based services mostly such as VPN, Access Screening ,Number Portability, SIP-Trunking,Call Gapping.
Most operator environments have seen a rise in the number of service delivery platforms. Also complexity of telecom networks have increased manifold hence CSPs are facing multiple challenges. Increased efforts and costs are required for maintaining all the SDP platforms. These platforms are generally of different vendors and cater to different technologies thereby greatly increase chances of limiting the scalability and flexibility of the operator landscape. More effort required for sustaining the life cycle of the platform and challenges in integrating non compatible SDPs due to proprietary design have been stumbling blocks in the progress of CSPs across the world.
To overcome these challenges there is trend in the market to move towards SDP consolidation wherein instead of maintaining several SDPs with their proprietary design CSPs prefer maintaining a single or less number of SDPs having standardized interfaces.



As illustrated in the above figure there is a transition that is taking place in the industry towards consolidation of service delivery session control. This would provide a cost effective sustenance of existing applications and the rapid creation and deployment of new services leading to increased revenue recognition by CSPs.
- Agile Development
- Innovative services
- open SOA based architectures
- IN/NGN Platform and Services
- Reuse of existing investments in legacy service platforms
- low cost of new service development
- faster time to market
- Monetize investment in Network Infrastructure uplift – SIP trunking, VoLTE etc.
Services that should be covered in the Scope of Migration from fixed line to IP telephony are:
- Virtual Private Network (VPN) : An Intelligent Network (IN) service, which offers the functions of a private telephone network. The basic idea behind this service is that business customers are offered the benefits of a (physical) private network, but spared from owning and maintaining it.
- Access Screening(ASC): An IN service, which gives the operators the possibility to screen (allow/barring) the incoming traffic and decide the call routing, especially when the subscribers choose an alternate route/carrier/access network (also called Equal Access) for long distance calls on a call by call basis or pre-selected.
- Number Portability(NP) : An IN service allows subscribers to retain their subscriber number while changing their service provider, location, equipment or type of subscribed telephony service. Both geographic numbers and non-geographic numbers are supported by the NP service.
WebRTC based Unified Communication platform
Using WebRTC Solution for Delivering In Context Voice which provides new monetizing benefits to the Enterprise customers of Service Providers. This includes following components:
- WebRTC Gateway for implementation for inter-connect with SIP Legacy
- Enhancement of WebRTC Client with new features like Cloud Address Book, Conferencing & Social Networking hooks.
- Cloud based solutions

Challenges in Migration to IMS (Total IP )
Since long I have been advocating the benefits of migration to IMS from a current fixed line / legacy/ proprietary VOIP / SS7 based system . However I decided to write this post on the challenges in migration to IMS system from a telecom provider’s view. Though I could think of many , I have jot down the major 4 . they are as follows :
Data Migration challenges
- Establishing a common data model definition
- Data migration seamlessly
- Configuration management
- Extracting data from multiple sources and vendors , that includes legacy systems
- Extracting data due to its large scale and volume
Training
- Creating an effective knowledge share and transfer for live operations
- Training in fallback plans, standards and policies .
Customer impact
- Minimized customer outage
- Enhance customer experience by delivering quality services on schedule
- Ensuring security of customer’s confidential data
- Transfer of customer services without any impact.
Testing in replicated environment
- Physical pre-transfer test
- Reducing cycle time
- Verification and validation at every change in data environment
- Detect production issues early in the test -lifecycle
Fallback plans
- Pilot program and real network simulation for ensuring preparedness
- Tracking changes in new network