VOIP Call Metric Monitoring and MOS ( Mean Opinion Score)

Metrics for monitoring a VOIP call can be obtained from any node in media path of the call flow . Essentially used for analysis via calculation and aggregation , and sometimes used for realtime performance tracking and rectification too .

Rating Factor (R-Factor) and Mean Opinion Score (MOS) are two commonly-used measurements of overall VoIP call quality.

R-Factor: A value derived from metrics such as latency, jitter, and packet loss per ITU‑T Recommendation G.107. It assess the quality-of-experience for VoIP calls on your network. Typical scores range from 50 (bad) to 90 (excellent).

  • R factor of 90 , Mos is 4.3 ( Excellent )
  • R factor 50 , Mos is 2.6 ( Bad)

MOS: It is derived from the R-Factor per ITU‑T Recommendation G.10 which measures VoIP call quality. PacketShaper measures MOS using a scale of 10-50. To convert to a standard MOS score (which uses a scale of 1-5), divide the PacketShaper MOS value by 10.

ITU ?
The International Telecommunication Union is the United Nations specialised agency in the field of telecommunications, information and communication technologies (ICTs).

ITU-T ?
TU Telecommunication Standardisation Sector is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardising telecommunications on a worldwide basis.

Read more about RTCP and RTCP / AVPF : RealTime Transport protocol (RTP) and RTP control protocol (RTCP )

MOS ( Mean Opinion Score )

MOS is terminology for audio, video and audiovisual quality expressions as per ITU-T P.800.1. It refers to listening, talking or conversational quality, whether they originate from subjective or objective models.

  • Very Good: 4.3-5.0
  • Bad: 3.1-3.6
  • Not Recommenced : 2.6-3.1
  • Very Bad: 1.0-2.6

It provides provisions for identifiers regarding the audio bandwidth, the type of interface (electrical or acoustical) and the video resolution too , such as
MOS-AVQE for audiovisual quality;
MOS-CQE is for estimated conversational quality;
MOS-LQE for listening quality;
MOS-TQE is used for talking quality;
MOS-VQE depicts video quality;

For Audio Signal Speech Quality/ AV
– N denotes audio signals upto narrow-band (300-3400 Hz)
– W is for audio signals upto wideband (50-7000 Hz)
– S for upto super-wideband (20-14000 Hz)
– F is obtained for fullband (10-20000 Hz)

For Listening quality LQO

  • electrical measurement
    performed at electrical interfaces only. In order to predict the listening quality as perceived by the user, assumptions for the terminals are made in terms of intermediate reference system (IRS) or corrected IRS frequency response. A sealed condition between the handset receiver and the user’s ear is assumed.
  • acoustical measurement
    performed at acoustical interfaces. In order to predict the listening quality as perceived by the user, this measurement includes the actual telephone set products provided by the manufacturer or vendor. In combination with the choice of the acoustical receiver in the laboratory test , there will be a more or less leaky condition between the handset’s receiver and the artificial ear.

Conversational Quality / CQ

Arithmetic mean value of subjective judgments on a 5-point ACR quality scale, is calculated.
Talking Quality / TQ

This describes the quality of a telephone call as it is perceived by the talking party only. Factors affecting TQ include echo signal , background noise , double talk etc. It is calculated based on the arithmetic mean value of judgments on a 5-point ACR quality scale.

Video Quality / VQ

To account for differentiation in perceived quality for mobile and fixed devices and to allow for proper handling of different use-cases as
– M for mobile screen such as a smartphone or tablet (approximately 25 cm or less)
– T for PC/TV monitors
It is calculated based on the arithmetic mean value of subjective judgments, typically on a 5-point quality scale

Audio Visual Quality / AVQ

Refers to quality of audio visual stream under corresponding networking conditions. It is also calculated based on the arithmetic mean value of judgments on a 5-point ACR quality scale.

Other parameters also contributing to VoIP metric Analysis

Latency

It is the time required for packets to travel from one end to another, in milliseconds.
If the sum of measured latency is 800 ms and the number of latency samples is 20, then the average latency is 40 ms.
Header of the RTP packets carry timestamps which later can also be used to calculate round-trip time.

Round Trip Time

time taken for data to travel to the target destination and back. It is calculated as when the packet was sent and when acknowledgment for it was received.

Measured in milliseconds (ms), high RTT indicates a poor network quality and would result in the audio lag issue.

RTT can represent full path network latency experienced by the packets and can do away with frequent ICMP ping/echo requests/probes to check network health .

They are used to calculates RTO ( Request transmission timeouts )in TCP transmission ie how much time the sender should wait before retrying to send an unacknowledged packet.

Packet Loss

When packet does not successfully make it to the destination. It could happen due to multiple reasons such as

  • network bandwidth unavailable or network congestion
  • overloading of the buffer such that they do not have enough space to queue the packets or high priority preferences
  • intentionally configuring ACL or firewalls to drop the packets or discarding packets above rate limit by internet service provider
  • CPU unable to cope up with high security networks encryption and decryption speed requirements
  • Low battery on device may cause cause underworking of devices and hence lead to packet loss
  • limitation on physical device like softphone , hardphone or bluetooth headsets or if the hardware is broken at router , switch or cabling
  • for bluetooth headsets distance range could also be problem for weak signals and consequently packets drops
  • network errors as shown under Simple Network Management Protocol (SNMP) issues like FCS Errors, Alignment Errors, Frame Too Longs, MAC Receive Errors, Symbol Errors, Collisions, Carrier Sense Errors, Outbound Errors, Outbound Discards, Inbound Discards, Inbound Errors, and Unknown Protocol errors.
  • radio frequency interference from high voltage systems or microwaves can also cause packet drop in wireless networks

such that the packet can either not arrive or arrive late and be dropped out by the codec . To the listener it would appear like chopped voice or complete dropout for moments .

Obtaining packet loss details

  • Packet loss percentage is performed as per RFC 3550 using RTP header sequence numbers. If packets are missing sequence the media stream monitors flags that as lost packet.
  • It can also be concluded from the difference between total packets and received packets from CDR
  • RTP-XR (RFC-3611) records report real-time drops

Jitter

The variation in the delay of received packets in a flow, measured by comparing the interval when RTP packets were sent to the interval at which they were received.
For instance, if packet #1 and packet #2 leave 30 milliseconds apart and arrive 50 milliseconds apart, then the jitter is 20 milliseconds or if packets transmitted every 15ms and reach destination at every 15ms then there is no variability and the jitter is 0.

Causes jitter

  • Frame bigger than jitter buffer size
  • algorithms to back-of collision by introducing delays in packet transmission in half duplex interfaces
  • even small jitter can get exponentially worse on slow or congestion links
  • jitter can be introduced due to bottlenecks near router buffer, rerouting / parallel routes to the same destination, load-sharing, or route tables changing the path

Handling jitter :

Jitter below 30ms is manageable with the help of jitter buffers in codecs however above that the codec starts to drop the late arrived packets and cannot reassemble / splice up the packets for a smooth media stream effectively, hence causing media quality issues like clipped audio

detecting jitter:

  • looking at inter packet gap in the direction of RTP stream in wireshark
  • RTP-XR (RFC-3611 & RFC-7005) for real-time jitter buffer usage and drops.
  • software based detection : Network sniffers wireshark , path analyser, Application Performance Monitoring (APM) Tools , CDR analyser , Simple Network Management Protocol (SNMP) Collector
MetricGoodAverageBad
Jitter<= 10ms10ms – 30ms>=30ms
Packet Loss< 0.5%0.5% – 0.9%>= 0.9%
Audio Level>-40dB-80dB to -40dB< -80dB
RTT< 200ms200ms – 300ms> 300ms
Range for good bad attributes for calculating mos score

Ref : ITU P.800.1 : Mean opinion score (MOS) terminology 

Methods for objective and subjective assessment of speech and video quality.

Mapping R-value to calculate MOS

To map MOS from R value using above defined metrics , a standard formula is used. First the latency and jitter are added and defined value for computation time is also added , resulting in effective latency

effectiveLatency = latency + jitter * latencyImpact + compTime

Subtracting effective latency from defined R

R = 93 – (effectiveLatency / factorLatencyBased)

Calculate percentage of packet loss

 R = R – (lostPackets * impact)
 MOS = ( (R - 60) * (100 – R) * 0.000007R) + 0.035R + 1)

MOS on RTP engine Kamailio

Minimum edge Values

mos_min_pv
minimum encountered MOS value for the call.
range – 1.0 to 5.0.

mos_min_at_pv
timestamp of when the minimum MOS value was encountered during the call

mos_min_packetloss_pv
amount of packetloss in percent at the time the minimum MOS value was encountered

mos_min_roundtrip_pv
packet round-trip time in milliseconds at the time the minimum MOS value was encountered

mos_min_jitter_pv
amount of jitter in milliseconds at the time the minimum MOS value was encountered

Maximum edge Values

mos_max_pv
maximum encountered MOS value for the call.

mos_max_at_pv
timestamp of when the maximum MOS value was encountered during the cal

mos_max_packetloss_pv
amount of packetloss in percent at maximum MOS moment

mos_max_roundtrip_pv
packet round-trip time in milliseconds at maximum MOS moment

mos_max_jitter_pv
amount of jitter in milliseconds at maximum moment

Average Values

mos_average_pv
average (median) MOS value for the call.
Range – 1.0 through 5.0.

mos_average_packetloss_pv
average (median) amount of packetloss in percent present throughout the call.

mos_average_jitter_pv
average (median) amount of jitter in milliseconds present throughout the call.

mos_average_roundtrip_pv

mos_average_samples_pv
number of samples used to determine the other “average” MOS data points.

Labels

mos_A_label_pv
custom label used in rtpengine signalling.
If set, all the statistics pseudovariables with the A suffix will be filled in with statistics only from the call legs that match the label given in this variable.

A label’s min
mos_min_A_pv
mos_min_at_A_pv
mos_min_packetloss_A_pv
mos_min_jitter_A_pv
mos_min_roundtrip_A_pv

A label’s max
mos_max_A_pv
mos_max_at_A_pv
mos_max_packetloss_A_pv
mos_max_jitter_A_pv
mos_max_roundtrip_A_pv

A label’s average
mos_average_A_pv
mos_average_packetloss_A_pv
mos_average_jitter_A_pv
mos_average_roundtrip_A_pv
mos_average_samples_A_pv

B labels’s min
mos_B_label_pv
mos_min_B_pv
mos_min_at_B_pv
mos_min_packetloss_B_pv
mos_min_jitter_B_pv
mos_min_roundtrip_B_pv

B label’s max
mos_max_B_pv
mos_max_at_B_pv
mos_max_packetloss_B_pv
mos_max_jitter_B_pv
mos_max_roundtrip_B_pv

B label’s average
mos_average_B_pv
mos_average_packetloss_B_pv
mos_average_jitter_B_pv
mos_average_roundtrip_B_pv
mos_average_samples_B_pv

Setting MOS collection on kamailio

set the kamailio config rtpengine params for names the variable the hold specific mos values

modparam("rtpengine", "mos_max_pv", "$avp(mos_max)")
modparam("rtpengine", "mos_average_pv", "$avp(mos_average)")
modparam("rtpengine", "mos_min_pv", "$avp(mos_min)")

modparam("rtpengine", "mos_average_packetloss_pv", "$avp(mos_average_packetloss)")
modparam("rtpengine", "mos_average_jitter_pv", "$avp(mos_average_jitter)")
modparam("rtpengine", "mos_average_roundtrip_pv", "$avp(mos_average_roundtrip)")
modparam("rtpengine", "mos_average_samples_pv", "$avp(mos_average_samples)")

modparam("rtpengine", "mos_min_pv", "$avp(mos_min)")
modparam("rtpengine", "mos_min_at_pv", "$avp(mos_min_at)")
modparam("rtpengine", "mos_min_packetloss_pv", "$avp(mos_min_packetloss)")
modparam("rtpengine", "mos_min_jitter_pv", "$avp(mos_min_jitter)")
modparam("rtpengine", "mos_min_roundtrip_pv", "$avp(mos_min_roundtrip)")

modparam("rtpengine", "mos_max_pv", "$avp(mos_max)")
modparam("rtpengine", "mos_max_at_pv", "$avp(mos_max_at)")
modparam("rtpengine", "mos_max_packetloss_pv", "$avp(mos_max_packetloss)")
modparam("rtpengine", "mos_max_jitter_pv", "$avp(mos_max_jitter)")
modparam("rtpengine", "mos_max_roundtrip_pv", "$avp(mos_max_roundtrip)")

modparam("rtpengine", "mos_A_label_pv", "$avp(mos_A_label)")
modparam("rtpengine", "mos_average_packetloss_A_pv", "$avp(mos_average_packetloss_A)")
modparam("rtpengine", "mos_average_jitter_A_pv", "$avp(mos_average_jitter_A)")
modparam("rtpengine", "mos_average_roundtrip_A_pv", "$avp(mos_average_roundtrip_A)")
modparam("rtpengine", "mos_average_A_pv", "$avp(mos_average_A)")

modparam("rtpengine", "mos_B_label_pv", "$avp(mos_B_label)")
modparam("rtpengine", "mos_average_packetloss_B_pv", "$avp(mos_average_packetloss_B)")
modparam("rtpengine", "mos_average_jitter_B_pv", "$avp(mos_average_jitter_B)")
modparam("rtpengine", "mos_average_roundtrip_B_pv", "$avp(mos_average_roundtrip_B)")
modparam("rtpengine", "mos_average_B_pv", "$avp(mos_average_B)")

For individual leg labbeling fill up the lables

KSR.pv.sets("$avp(mos_A_label)","Aleg_label")
KSR.pv.sets("$avp(mos_B_label)","Bleg_label")

Gather the mos stats from the code . Given exmaple is in Lua.
The values are filled in after invoking“rtpengine_delete”, “rtpengine_query”, or “rtpengine_manage” if the command resulted in a deletion of the call (or call branch).

KSR.log("info", " mos avg " .. KSR.pv.get("$avp(mos_average)"))
KSR.log("info", " mos max " .. KSR.pv.get("$avp(mos_max)"))
KSR.log("info", " mos min " .. KSR.pv.get("$avp(mos_min)"))

KSR.log("info", "mos_average_packetloss_pv" .. KSR.pv.get("$avp(mos_average_packetloss)"))
KSR.log("info", "mos_average_jitter_pv" .. KSR.pv.get("$avp(mos_average_jitter)"))
KSR.log("info", "mos_average_roundtrip_pv" .. KSR.pv.get("$avp(mos_average_roundtrip)"))
KSR.log("info", "mos_average_samples_pv" .. KSR.pv.get("$avp(mos_average_samples)"))

KSR.log("info", "mos_min_pv" .. KSR.pv.get("$avp(mos_min)"))
KSR.log("info", "mos_min_at_pv" .. KSR.pv.get("$avp(mos_min_at)"))
KSR.log("info", "mos_min_packetloss_pv" .. KSR.pv.get("$avp(mos_min_packetloss)"))
KSR.log("info", "mos_min_jitter_pv" .. KSR.pv.get("$avp(mos_min_jitter)"))
KSR.log("info", "mos_min_roundtrip_pv" .. KSR.pv.get("$avp(mos_min_roundtrip)"))

KSR.log("info", "mos_max_pv" .. KSR.pv.get("$avp(mos_max)"))
KSR.log("info", "mos_max_at_pv" .. KSR.pv.get("$avp(mos_max_at)"))
KSR.log("info", "mos_max_packetloss_pv" .. KSR.pv.get("$avp(mos_max_packetloss)"))
KSR.log("info", "mos_max_jitter_pv" .. KSR.pv.get("$avp(mos_max_jitter)"))
KSR.log("info", "mos_max_roundtrip_pv" .. KSR.pv.get("$avp(mos_max_roundtrip)"))

local mos_A_label = KSR.pv.get("$avp(mos_A_label)")
if not (mos_A_label == nil) then
    KSR.log("info", "mos_average_packetloss_A_pv" .. KSR.pv.get("$avp(mos_average_packetloss_A)"))
    KSR.log("info", "mos_average_jitter_A_pv" .. KSR.pv.get("$avp(mos_average_jitter_A)"))
    KSR.log("info", "mos_average_roundtrip_A_pv" .. KSR.pv.get("$avp(mos_average_roundtrip_A)"))
    KSR.log("info", "mos_average_A_pv" .. KSR.pv.get("$avp(mos_average_A)"))
end

local mos_B_label = KSR.pv.get("$avp(mos_B_label)")
if not (mos_B_label == nil) then
    KSR.log("info", "mos_average_packetloss_B_pv" .. KSR.pv.get("$avp(mos_average_packetloss_B)"))
    KSR.log("info", "mos_average_jitter_B_pv" .. KSR.pv.get("$avp(mos_average_jitter_B)"))
    KSR.log("info", "mos_average_roundtrip_B_pv" .. KSR.pv.get("$avp(mos_average_roundtrip_B)"))
    KSR.log("info", "mos_average_B_pv" .. KSR.pv.get("$avp(mos_average_B)"))
end

Sample obtained result for avg

INFO: [core/kemi.c:144]: sr_kemi_core_log(): mos avg 3.8 2(260)

CDR with MOS on freeswitch

<?xmlversion="1.0"?>
					
<cdr core-uuid="[UUID]" switchname="freeswitch">
<channel_data>
	<state>
	<direction>
	<state_number>
	<flags>	
	<caps>
</channel_data>
					
<call-stats>			
	<audio>	
		<inbound>
			<raw_bytes>	
			<media_bytes>
			<packet_count>
			<media_packet_count>		
			<skip_packet_count>
			<jitter_packet_count>
			<dtmf_packet_count>	
			<cng_packet_count>		
			<flush_packet_count>
			<largest_jb_size>
			<jitter_min_variance>
			<jitter_max_variance>
			<jitter_loss_rate>
			<jitter_burst_rate>
			<mean_interval>
			<flaw_total>
			<quality_percentage>
			<mos>
		</inbound>				
		<outbound>
			<raw_bytes>
			<media_bytes>
			<packet_count>
			<media_packet_count>
			<skip_packet_count>
			<dtmf_packet_count>
			<cng_packet_count>
			<rtcp_packet_count>
			<rtcp_octet_count>
		</outbound>	
</audio>
				
<video>	
	<inbound>
		<raw_bytes>
		<media_bytes>
		<packet_count>
		<media_packet_count>
		<skip_packet_count>
		<jitter_packet_count>
		<dtmf_packet_count>
		<cng_packet_count>
		<flush_packet_count>
		<largest_jb_size>
		<jitter_min_variance>
		<jitter_max_variance>
		<jitter_loss_rate>
		<jitter_burst_rate>
		<mean_interval>
		<flaw_total>
		<quality_percentage>
		<mos>
	</inbound>	
	<outbound>
		<raw_bytes>
		<media_bytes>
		<packet_count>
		<media_packet_count>
		<skip_packet_count>
		<dtmf_packet_count>
		<cng_packet_count>
		<rtcp_packet_count>
		<rtcp_octet_count>	
	</outbound>
</video>
</call-stats>
				
<variables>		
<is_outbound><uuid><session_id><text_media_flow><direction><ep_codec_string><channel_name><secondary_recovery_module><verto_dvar_email><verto_dvar_avatar><jsock_uuid_str><verto_user><presence_id><verto_client_address><chat_proto><verto_host><event_channel_cookie><verto_profile_name><record_stereo><default_areacode><transfer_fallback_extension><toll_allow><accountcode><user_context><effective_caller_id_name><effective_caller_id_number><outbound_caller_id_name><outbound_caller_id_number><callgroup><user_name><domain_name><Event-Name><Core-UUID><FreeSWITCH-Hostname><FreeSWITCH-Switchname><FreeSWITCH-IPv4><FreeSWITCH-IPv6><Event-Date-Local><Event-Date-GMT><Event-Date-Timestamp><Event-Calling-File><Event-Calling-Function><Event-Calling-Line-Number><Event-Sequence><verto_remote_caller_id_name><verto_remote_caller_id_number><switch_r_sdp><DP_MATCH><DP_MATCH><call_uuid><open><rtp_secure_media><export_vars><conference_enter_sound><conference_exit_sound><video_banner_text><rtp_use_codec_string><remote_audio_media_flow><audio_media_flow><rtp_audio_recv_pt><rtp_use_codec_name><rtp_use_codec_fmtp><rtp_use_codec_rate><rtp_use_codec_ptime><rtp_use_codec_channels><rtp_last_audio_codec_string><original_read_codec><original_read_rate><write_codec><write_rate><remote_audio_ip><remote_audio_port><remote_audio_rtcp_ip><remote_audio_rtcp_port><dtmf_type><remote_video_media_flow><video_media_flow><video_possible><rtp_video_pt><rtp_video_recv_pt><video_read_codec><video_read_rate><video_write_codec><video_write_rate><rtp_last_video_codec_string><rtp_use_video_codec_name><rtp_use_video_codec_rate><rtp_use_video_codec_ptime><remote_video_ip><remote_video_port><remote_video_rtcp_ip><remote_video_rtcp_port><local_media_ip><local_media_port><advertised_media_ip><rtp_use_timer_name><rtp_use_pt><rtp_use_ssrc><rtp_2833_send_payload><rtp_2833_recv_payload><remote_media_ip><remote_media_port><local_video_ip><local_video_port><rtp_use_video_pt><rtp_use_video_ssrc><rtp_local_sdp_str><current_application_data><current_application><send_silence_when_idle><rtp_has_crypto><endpoint_disposition><conference_name><conference_member_id><conference_moderator><conference_ghost><conference_uuid><video_width><video_height><video_fps><verto_hangup_disposition><read_codec><read_rate><hangup_cause><hangup_cause_q850><digits_dialed><start_stamp><profile_start_stamp><answer_stamp><progress_media_stamp><end_stamp><start_epoch><start_uepoch><profile_start_epoch><profile_start_uepoch><answer_epoch><answer_uepoch><bridge_epoch><bridge_uepoch><last_hold_epoch><last_hold_uepoch><hold_accum_seconds><hold_accum_usec><hold_accum_ms><resurrect_epoch><resurrect_uepoch><progress_epoch><progress_uepoch><progress_media_epoch><progress_media_uepoch><end_epoch><end_uepoch><last_app><last_arg><caller_id><duration><billsec><progresssec><answersec><waitsec><progress_mediasec><flow_billsec><mduration><billmsec><progressmsec><answermsec><waitmsec><progress_mediamsec><flow_billmsec><uduration><billusec><progressusec><answerusec><waitusec><progress_mediausec><flow_billusec><rtp_audio_in_raw_bytes><rtp_audio_in_media_bytes><rtp_audio_in_packet_count><rtp_audio_in_media_packet_count><rtp_audio_in_skip_packet_count><rtp_audio_in_jitter_packet_count><rtp_audio_in_dtmf_packet_count><rtp_audio_in_cng_packet_count><rtp_audio_in_flush_packet_count><rtp_audio_in_largest_jb_size><rtp_audio_in_jitter_min_variance><rtp_audio_in_jitter_max_variance><rtp_audio_in_jitter_loss_rate><rtp_audio_in_jitter_burst_rate><rtp_audio_in_mean_interval><rtp_audio_in_flaw_total><rtp_audio_in_quality_percentage><rtp_audio_in_mos><rtp_audio_out_raw_bytes><rtp_audio_out_media_bytes><rtp_audio_out_packet_count><rtp_audio_out_media_packet_count><rtp_audio_out_skip_packet_count><rtp_audio_out_dtmf_packet_count><rtp_audio_out_cng_packet_count><rtp_audio_rtcp_packet_count><rtp_audio_rtcp_octet_count><rtp_video_in_raw_bytes><rtp_video_in_media_bytes><rtp_video_in_packet_count><rtp_video_in_media_packet_count><rtp_video_in_skip_packet_count><rtp_video_in_jitter_packet_count><rtp_video_in_dtmf_packet_count><rtp_video_in_cng_packet_count><rtp_video_in_flush_packet_count><rtp_video_in_largest_jb_size><rtp_video_in_jitter_min_variance><rtp_video_in_jitter_max_variance><rtp_video_in_jitter_loss_rate><rtp_video_in_jitter_burst_rate><rtp_video_in_mean_interval><rtp_video_in_flaw_total><rtp_video_in_quality_percentage><rtp_video_in_mos><rtp_video_out_raw_bytes><rtp_video_out_media_bytes><rtp_video_out_packet_count><rtp_video_out_media_packet_count><rtp_video_out_skip_packet_count><rtp_video_out_dtmf_packet_count><rtp_video_out_cng_packet_count><rtp_video_rtcp_packet_count><rtp_video_rtcp_octet_count>

</variables>

<app_log>			
	<application app_name="..."app_data="...">
	<application app_name="..."app_data="...">
</app_log>
				
<callflow dialplan="XML" unique-id="[UUID]" profile_index="1">
	
	<extension name="myconference" number="3500">		
		<application app_name="..." app_data="...">
	</extension>	
	<caller_profile>
		<username>
		<dialplan>
		<caller_id_name>
		<caller_id_number>
		<callee_id_name>
		<callee_id_number>
		<ani>
		<aniii>
		<network_addr>
		<rdnis>
		<destination_number>
		<uuid>
		<source>
		<context>
		<chan_name>
	</caller_profile>
				
			
	<times>
		<created_time>
		<profile_created_time>
		<progress_time>	
		<progress_media_time>
		<answered_time>
		<bridged_time>
		<last_hold_time>	
		<hold_accum_time>
		<hangup_time>
		<resurrect_time>	
		<transfer_time>	
	</times>
</callflow>
				
</cdr>
			

References