Monthly Archives: May 2015


1. Spinning Colored Cube

Step 1 : Get three.js from :

Step 2 : Make a empty HTML5 page and import the script + basic styling of page

		<title>Spinning colored Cube</title>
			body { margin: 0; }
			canvas { width: 100%; height: 100% }
		<script src="js/three.min.js"></script>
		<script>// Our Javascript will go here. </script>

Step 3 : Scene

var scene = new THREE.Scene();	

Step 4 : Camera
Camera types in three.js are CubeCamera , OrthographicCamera, PerspectiveCamera. We are using Perspective camera here . Attributes are field of view , aspect ratio , near and far clipping plane.

var camera = new THREE.PerspectiveCamera( 75, window.innerWidth / window.innerHeight, 0.1, 1000 );

Step 5: Renderer
Renderer uses a <canvas> element to display the scene to us.

var renderer = new THREE.WebGLRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );

Step 6: . BoxGeometry object contains all the points (vertices) and fill (faces) of the cube.

var geometry = new THREE.BoxGeometry( 1, 1, 1 );

Step 7: Material
threejs has materials like – LineBasicMaterial , MeshBasicMaterial , MeshPhongMaterial , MeshLambertMaterial
These have their properties like -id, name, color , opacity , transparent etc. Use MeshBasicMaterial and color attribute of 0x00ff00, which is green.

	var material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );

Step 8: Mesh
A mesh is an object that takes a geometry, and applies a material to it, which we then can insert to our scene, and move freely around.

var cube = new THREE.Mesh( geometry, material );

Step 9: By default, when we call scene.add(), the thing we add will be added to the coordinates (0,0,0). This would cause both the camera and the cube to be inside each other. To avoid this, we simply move the camera out a bit.

scene.add( cube );
	camera.position.z = 5;

Step 10: Create a loop to render something on the screen

function render() {
	requestAnimationFrame( render );
	renderer.render( scene, camera );

This will create a loop that causes the renderer to draw the scene 60 times per second.
Step 11 : Animating the cube
This will be run every frame (60 times per second), and give the cube a nice rotation animation

cube.rotation.x += 0.1;
cube.rotation.y += 0.1;

Augmented Reality in WebRTC Browser - Google Slides (1)

2. Shaded Material on Sphere

Stepp 1 : create a empty page and import three.min.js and jquery

		<title>Shaded Material on Sphere </title>
			body { margin: 0; }
			canvas { width: 100%; height: 100% }
		<script src="js/jquery.min.js"></script>
<script src="js/three.min.js"></script>
	<script>// Our Javascript will go here.</script>
	<div id="container"></div>

Step 2 : Repeat the same steps at in previous example

var scene = new THREE.Scene();
var camera =  new THREE.PerspectiveCamera(45, 600/600 , 0.1, 10000);
var renderer = new THREE.WebGLRenderer();
renderer.setSize(600 , 600 );	
camera.position.z = 300;	// the camera starts at 0,0,0 so pull it back

3. Create the sphere’s material as MeshLambertMaterial
MeshLambertMaterial is non-shiny (Lambertian) surfaces, evaluated per vertex. Set the color to red .

var sphereMaterial =  new THREE.MeshLambertMaterial(  { color: 0xCC0000  });

4. create a new mesh with sphere geometry ( radius, segments, rings) and add to scene

var sphere = new THREE.Mesh(  new THREE.SphereGeometry(  50, 16, 16 ),  sphereMaterial);

5. Light
Create light , set its position and add it to scene as well . Light can be point light , spot light , directional light .

var pointLight = new THREE.PointLight(0xFFFFFF);
pointLight.position.x = 10;
pointLight.position.y = 50;
pointLight.position.z = 130;

6. Render the whole thing

renderer.render(scene, camera);

Augmented Reality in WebRTC Browser - Google Slides (2)

3. Complex objects like Torusknot

Step 1 : Same as before make scene , camera and renderer

scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(125, window.innerWidth / window.innerHeight, 1, 500);
camera.position.set(0, 0, 100);
camera.lookAt(new THREE.Vector3(0, 0, 0));
var renderer = new THREE.WebGLRenderer(); 
renderer.setSize( window.innerWidth, window.innerHeight );
document.body.appendChild( renderer.domElement );

Step 2 : Add the lighting

var light = new THREE.PointLight(0xffffff);
light.position.set(0, 250, 0);
var ambientLight = new THREE.AmbientLight(0x111111);

Step 3 : Add Torusknotgeometry with radius, tube, radialSegments, tubularSegments, arc

var geometry = new THREE.TorusKnotGeometry( 8, 2, 100, 16, 4, 3 ); 
var material = new THREE.MeshLambertMaterial( { color: 0x2022ff } );
var torusKnot = new THREE.Mesh( geometry, material ); 
torusKnot.position.set(3, 3, 3);
scene.add( torusKnot );
camera.position.z =25;

Step 4 : Do the animation and render on screen

var render = function () { 
    requestAnimationFrame( render ); 
    torusKnot.rotation.x += 0.01;    
    torusKnot.rotation.y += 0.01; 
    renderer.render(scene, camera);

Augmented Reality in WebRTC Browser - Google Slides (3)

TFX Widgets Development

TFX is a modular widget based WebRTC communication and collaboration solution. It is a customizable solution where developers can create and add their own widget over the underlying WebRTC communication mechanism . It can support extensive set of user activity such as video chat , message , play games , collaborate on code , draw something together etc . It can go as wide as your imagination . This post describes the process of creating widgets to host over existing TFX platform .


It is required to have TFX Chrome extension installed and running from Chrome App Store under above . To do this follow the steps described in TangoFX v0.1 User’s manual.

Test TFX Sessions  ?

TFX Sessions uses the browser’s media API’s , like getUserMedia and Peerconnection to establish p2p media connection . Before media can traverse between 2 end points the signalling server is required to establish the path using Offer- Answer Model . This can be tested by making unit test cases on these function calls .

TFX Sessions uses socketio based handshake between peers to ascertain that they are valid endpoints to enter in a communication session . This is determined by SDP ( Session Description Parameters ) . The same can be observed in chrome://webrtc-internals/ traces and graphs .

TangoFX v8 Developer's manual - Google Docs

How to make widgets using TFX API ?

Step 1:  To make widgets for TFX , just write your simple web program which should consist of one main html webpage and associated css and js files for it .

Step 2 : Find an interesting idea which is requires minimal js and css . Remember it is a widget and not a full fleshed web project , however js frameworks like requirejs , angularjs , emberjs etc , work as well.

Step 3: Make a compact folder with the name of widget and put the respective files in it. For example the html files or view files would go to src folder , javascript files would goto js folder , css files would goto css folder , pictures to picture folder , audio files to sound folder and so on .

Step 4 : Once the widget is performing well in standalone environment , we can add a sync file to communicate the peer behaviors across TFX network . For this we primarily use 2 methods .

  • SendMessage : To send the data that will be traversed over DataChannel API of TFX . The content is in json format and will be shared with the peers in the session .
  • OnMessage : To receive the message communicated by the TFX API over network

Step 5: Submit the application to us or test it yourself by adding the plugin description in in widgetmanifest.json file . Few added widgets are

"plugintype": "code",
"id" 	:"LiveCode",
"type" 	: "code",
"title" : "Code widget",
"icon" 	: "btn btn-style glyphicon glyphicon-tasks", 
"url"	: "../plugins/AddCode/src/codewindow.html"

"plugintype": "draw",
"id" 	:"Draw",
"type" 	: "draw",
"title" : "Code widget",
"icon" 	: "btn btn-style glyphicon glyphicon-pencil", 
"url"	: "../plugins/AddDraw/src/drawwindow.html"

"plugintype": "pingpong",
"id"   :"Pingpong",
"type" : "pingpong",
"title": "ping pong widget",
"icon" : "btn btn-style glyphicon glyphicon-record", 
"url"  : "../plugins/AddPingpong/src/main.html"

Step 6 : For proper orientation of the application make sure that overflow is hidden and padding to left is atleast 60 px so that it doesnt overlap with panel
padding-left: 60px;
overflow: hidden;

Step 7 : Voila the widget is ready to go .

Simple Messaging Widget

For demonstration purpose I have summarised the exact steps followed to create the simple messaging widget which uses WebRTC ‘s Datachannel API in the back and TFX SendMessage & OnMessage API to achieve

Step 1 : Think of a general chat scenario as present in various messaging si

Step 2: Made a folder structure with separation for js , css and src. Add the respective files in folder. It would look like following figure:

TangoFX v8 Developer's manual - Google Docs (1)
Step 3 : The html main page is

<!-- jquerry -->
<script src="../../../../js/jquery/jquery.min.js"></script>
<link rel="stylesheet" type="text/css" href="../../../../css/jquery-ui.min.css"/>
<link rel="stylesheet" type="text/css" href="../css/style.css">

<div id="messages" class="message_area">
<textarea disabled class="messageHistory" rows="30" cols="120" id="MessageHistoryBox"></textarea>
<input type ="text" id="MessageBox" size="120"/>
<script src="../js/sync.js" type="text/javascript"></script>

Step 4 : The contents of css file are

body {padding: 0; margin: 0; overflow: hidden;}

	  padding-left: 60px;
	background-color: transparent;
	background: transparent;

Step 5 : The contents of js file

//send message when mouse is on mesage dicv ans enter is hit
    if(event.keyCode == 13){
    var msg=$('#MessageBox').val(); 
    //send to peer 
    var data ={

function addMessageLog(msg){
    //add text to text area for message log for self 
 $('#MessageHistoryBox').text( $('#MessageHistoryBox').text() + '\n'+ 'you : '+ msg);

// handles send message
function sendMessage(message) {
      var widgetdata={
  // postmessage

//to handle  incoming message
function onmessage(evt) {
    //add text to text area for message log from peer
  if(!=null ){
      $('#MessageHistoryBox').text( $('#MessageHistoryBox').text() +'\n'+ 'other : '+ );


Step 6: The end result is :

TangoFX v8 Developer's manual - Google Docs (2)

Developing a cross origin Widget ( XHR)

Let us demonstrate the process and important points to create a cross- origin widget :

step 1 : Develop a separate web project and run it on a https

step 2 : Add the widget frame in TFX . Following is the code I added to make an XHR request over GET

var xmlhttp;
xmlhttp=new XMLHttpRequest();
  if (xmlhttp.readyState==4 && xmlhttp.status==200)

step 3 : Using self made https we have have to open the url separately in browser and give it explicit permission to open in advanced setting. Make sure the original file is visible to you at the widgets url .

TangoFX v8 Developer's manual - Google Docs (3)
step 4: Adding permission to manifest for access the cross origin requests

"permissions": [

Step 5 : Rest of the process are similar to develop a regular widget ie css and js .

Step 6: Resulting widget on TFX

TangoFX v8 Developer's manual - Google Docs (4)

Note 1 :
In absence of changes to manifest file the cross origin request is meet with a Access-Control-Allow-Origin error .

Note 2:
While using POST the TFX responds with Failed to load resource: the server responded with a status of 404 (Not Found)

Note 3:
Also if instead of https http is used the TFX still responds with Failed to load resource: the server responded with a status of 404 (Not Found)

TFX WebRTC SaaS ( Software as a Service )

TFX  is WebRTC based communication platform built entirely on open standards making it extensively scalable. The underlying API completely masks the communication  aspect and lets the user enjoy an interactive communication session. It also supports easy to build widgets framework which can be used to build applications on the TFX platform .

TFX Sessions

TFX sessions is a part of TFX . It is a free Chrome extension WebRTC client that enables parties communicating and collaborating, to have an interactive and immersive experience. You can find it on Chrome Webstore here .

Features of TFX Sessions:

Through TFX, users can have instant multimedia Internet call sessions .

The core  features are :

  • No signin or account management
  • No additional requirement like Flash , Silverlight or Java
  • URL based session management
  • secure WebRTC based communication
  • complete privacy with no user tracking or media flow interruption
  • Ability to share session on social network platforms like Facebook , twitter , linkedin , gmail , google plus etc

Screenshot from 2015-05-19 11:47:42

  • ability to choose between multiple cameras

Screenshot from 2015-05-19 11:53:06

The TFX platform has developer friendly APIs to help build widgets. Some of the pre-built widgets available on TFX are:

  • Coding


  • Drawing

Screenshot from 2015-04-13 16:28:22

  • Multilingual chat


  • Screen sharing


TFX sessions is free for personal use and can be downloaded from Chrome Webstore.

What is the differentiator with other internet call services?

  • No registration , login for account management required
  • Communication is directly between peer to peer ie information privacy.
  • Third party apps , services can be included as widgets on TFX platform.
  • Can be skimmed to be embedded inside Mobile app webview , iframe, other portals etc anytime .

TFX Sessions Integration Models

The 3 possible approaches for TFX Integration  in increasing order of deployment time are  :

  1. WebSite’s widget on TFX chrome extension .
  2. Launch TFX extension in an independent window from website
  3. TFX call from embedded Window inside the website page

1. WebSite’s widget on TFX chrome extension .

This outlines the quickest deliverable approach of building the websites own customized widget on TFX widgets API and deployed on existing TFX communication setup .

Step 1 : Login using websites credentials to access the content

WebSite’s widget on TFX chrome extension

Step 2 : Access the website with the other person inside the TFX “ Pet Store “ Widget

WebSite’s widget on TFX chrome extension

2. Launch TFX in an independent window from “Click to Call” Button on website

This approach outlines the process of launching TFX in an independent window from a click of a button on website. However it is a prerequisite to have TFX extension installed on your Chrome browser beforehand.

Step 1 : Have TFX installed on chrome browser
Step 2 : Trigger and launch TFX chrome extension window on click of button on webpage

Launch TFX extension in an independent window from website

3. TFX call from embedded Window inside Website page

This section if for the third approach which is of being able to make TFX calls from embedded Window inside of the webpage. Refer to sample screen below :

Step 1 : Have TFX embedded in an iframe inside the website

TFX Integration Models (3)
Step 2 : Make session on click of button inside the iframe.

TFX Integration Models (4)

Technical Details about TFX like architecture , widgets development , components description etc can be found here : TFX Platform

To get more information about TFX and/or making custom widgets get i touch with me at or email to

XMPP server with JavaScript XMPP clients ( Converse.js)

The setps to install , configure and test a Openfire XMPP server was discussed in my previous blog . It also contained the java client code to interact with the XMPP server like connect , send presence , get and send message etc .

This article will describe the process of making a web based XMPP client that


Converse.js is a free and open-source XMPP chat client written in Javascript . Steps to get the xmpp javascript client working

  1. get the repo access from github

mkdir xmppclient

cd xmppclient

git init

git remote add origin

git fetch

  1. npm install and update

sudo apt-get install npm

npm install -g http-server node-inspector forever nodemon

  1. Make the project
make dev forever in ubuntu


 make -f dev in windows


 npm install bower update